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The kink of cellular automaton Rule 18

performs a random walk

Kari Eloranta, Helsinki University of Technology

Esa Nummelin, University of Helsinki

We give an exact characterization of the movement of a single kink in the elementary

cellular automaton Rule 18. It is a random walk with independent increments as well as

independent delay times. Its statistical parameters are computed to confirm the earlier

simulation results by Grassberger [G].
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0. Introduction

It is quite common in cellular automata that several invariant configurations or

phases can be identified. In one dimension the boundaries between these are called

kinks or dislocations. In some cases they move in a regular fashion like signals car-

rying information whereas in some cases their motion is highly erratic reflecting the

randomness in the initial configuration. The latter situation has been studied empir-

ically by Grassberger in [G] as a model for deterministic diffusion. The ’canonical’

case for chaotic kink motion seems to arise in the context of the elementary Rule

18. Knowing this phenomenon would clarify the asymptotic behavior of the system

as indicated by Lind [L]. Moreover it is likely that by utilizing block transformation

equivalences many other one-dimensional cellular automata could then be analyzed

analogously to Rule 18. In this note we rigorize the idea of a single kink in Rule 18

performing a random walk and compute its statistical parameters. This confirms

the earlier simulation based estimates.
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1. Set-up and result

Let {0, 1} be the set of symbols and E = {0, 1}Z be the set of configurations. A

one-dimensional elementary cellular automaton is a dynamical system on E defined

by a blockmap on three neighbouring symbols which commutes with the shift on

E. The blockmap of Rule 18 is simply 001 7→ 1, 100 7→ 1 while other triples map to

zero. Here we follow the standard numbering of elementary cellular automata (see

e.g. Wolfram [W]). Later the Rule 6 on binary doubles is also considered. In order

to avoid possible confusion between these rules we call them then 18/256 and 6/16

(there are 16 and 256 elementary rules on binary doubles and triples respectively).

The image of a configuration η = {η(x), x ∈ Z} under the Rule 18 is denoted by

τη. A partial configuration is denoted by η[a, b] = (η(a), . . . , η(b)), a ≤ b, a, b ∈ Z.

A configuration η contains a kink if η[a, b] = (1, 0, . . . , 0, 1) for b− a odd. The

middle of the kink (a+ b)/2 belongs to Z+1/2.

Here is a simple illustration of the action of Rule 18 on a piece of configuration

with a single kink in it:

(1)

η · · · 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 · · ·
τη · · · · 1 0 0 0 0 0 0 0 0 0 0 0 0 1 · · · ·
τ2η · · · · · 1 0 0 0 0 0 0 0 0 0 0 1 · · · · ·

τ7η · · · · · · · · · · 1 1 · · · · · · · · · ·

The middle of the kink has been indicated with an underbar. Note that the middle

point first jumps R − L = 4− 1 = 3 steps to the right where R = 4 = the number

of 1’s to the right of the kink until two zeros and L = 1 = the same number to the

left. After this jump the middle stays put for a time = R + L + 2 = 7 after which

it again jumps.

Let N be the set of natural numbers and N0 the set of non-negative integers.

Define a subset of E by

F = {η| for some a, η(a− 2j + 1) = η(a+ 2j) = 0, ∀j ∈ N}.

Then any η ∈ F contains at most one kink. The set F is invariant under the Rule

18.
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Let α be the Bernoulli(1/2) distribution on each of the the unspecified coordi-

nates of F . It is easy to see that the subset in F of those configurations that have

a kink is of full measure.

Suppose {ti, i ∈ N0} are i.i.d. positive random variables. Then Ti = t0 +

· · · + ti−1, T0 = 0 is a renewal process on N0. Let I(n) = i for Ti ≤ n < Ti+1

be the counting process. Let X0 be a random variable on Z + 1/2 and {Xi}i≥1

an i.i.d. sequence of Z-valued random variables that are independent of X0. If

{(Xi, ti), i ∈ N0} are independent pairs (but not necessarily within a pair) then

Sn = X0+ · · ·+XI(n) defines a Z+1/2-valued random walk with i.i.d. delay times.

Our result can now be stated. We use the notation X
d
=Y when random vari-

ables X and Y have the same distribution.

Theorem: Suppose that η ∈ F with a kink is distributed according to α. If Sn

denotes the midpoint of the kink in τnη then it is a random walk with i.i.d. delay

times. In particular the ith jump Xi
d
=R − L and the holding time ti

d
=R + L + 2

where R and L are geometrically distributed with parameter 1/2. The random walk

has zero drift and squared variation asymptotically equal to n.

Remark: By [L] Bernoulli(1/2) is the only non-trivial invariant product measure

for the Rule 18 on the configurations with every other entry zero. Hence if α is

Bernoulli(p1) distributed with p1 6= 0, 1/2, 1 on F , the movement of the kink is a

non-stationary stochastic process (a random walk in a temporally inhomogeneous

medium).

2. The proof

We first simplify the action of the rule on F to its essence. By adding a zero to the

kink in η ∈ F we obtain a configuration with at least every other entry zero. These

(even or odd indexed zeros) are then removed. On the remaining configuration

the rule is now 6/16 on binary doubles. This transformation is analogous to the

linearization of Jen [J]. Graphically:

0 0

0

0 1

1

1 0

1

1 1

0
↓ ( տ , ր )

3



The arrow points to the direction of time.

A simple but important observation is that this ruletable has a spatial three-

way symmetry i.e. it is identical rule when time is changed to run to either of

the directions indicated by the arrows in parenthesis. Or equivalently the rule is

permutive i.e. fixing the value of any of the cells in the triplet defines a permutation.

The Rule 6/16 is formulated as follows. Let E1/2 = {0, 1}Z+1/2 and Ẽ =

E ∪ E1/2, where as before E = {0, 1}Z. Then the cellular automaton map τ̃ acts

as τ̃ η(x) = 1 if η(x − 1/2) 6= η(x + 1/2) and 0 otherwise. Hence τ̃(E) = E1/2

and τ̃(E1/2) = E. We distribute the initial configuration η on E according to

Bernoulli(1/2). It follows that for each even n τnη has also Bernoulli(1/2) distri-

bution on E whereas for odd n τnη has Bernoulli(1/2) distribution on E1/2. Now

any η[a, b] = (1, 0, . . . , 0, 1) ∈ Ẽ can be designated to be a kink with middle point

at (a + b)/2. If b − a ≥ 2, it’s successor is η[a + 1/2, b − 1/2]. If b − a = 1 then

the kink jumps and its successor is η[c, d] where c = max { x ≤ a− 1/2| τ̃ η(x) = 1}

and d = min { x ≥ b+ 1/2| τ̃ η(x) = 1}.

We illustrate how the particular kink movement described in (1) happens under

the transformed rule (again the underbar within the 1–block denotes the middle of

the kink):

(2)

η · · · 0 1 1 1 1 1 1 1 0 · · ·
τ̃ η · · · 1 0 0 0 0 0 0 1 · · ·
τ̃2η · · · · 1 0 0 0 0 0 1 · · ·

τ̃7η · · · · · · 1 1 · · · · · ·

Now the kink first moves (R−L)/2 = (4− 1)/2 = 3/2 steps to the right where R =

the number of 1’s to the right of the kink until first zero and L = the same number

on the left hand side. Like in the rule 18/256 the holding time is R+ L+ 2 = 7.

From the construction it is now clear that the dynamical systems (F, τ) and

(Ẽ, τ̃) when started from configurations with one kink are isomorphic. Hence in

particular the movement of the kink is identical up to scaling. We shall again use

the notation Xi and ti for the ith jump and holding time of the kink.

The following is the core of the argument.

Lemma: Let us consider the kink movement in the Rule 6/16 i.e. the system (Ẽ, τ̃)

starting from a Bernoulli(1/2) distributed η ∈ E. Suppose that at time n we have a
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kink of the form (1, 1) at Sn in τ̃nη. Then the next jump is XI(n)+1
d
=(R−L)/2 and

the next holding time is tI(n)+1
d
=R+L+2 where R,L ∼ Geom(1/2) are independent

of each other and independent of the past of the walk.

Proof: Suppose that Sn = x. It is clear that the history of the kink is confined

to the backward cone with vertices at (x, n) and (x ± (n + 1)/2, 0) (see the Fig-

ure). Or equivalently the past σ–field Fn of the kink is completely determined

by the configurations in the backward cone at (x, n). Moreover η[x − (n + 1)/2,

x + (n + 1)/2] and its complement are independent. At step n 7→ n + 1 the kink

jumps (expands from a (1, 1) kink into a wider one). Its right endpoint moves

R + 1/2 steps to the right where R is the number of ones to the right of the kink

before the first zero (see the Figure in which R = 3 and L = 5). Given Fn, by

permutivity the value at η(x+ (n+ 3)/2) determines the value of every one of the

cells τ̃ iη(x + (n − i + 3)/2), i = 0, 1, . . . , n. Since η(x + (n + 3)/2) is independent

of Fn so is τ̃nη(x + 3/2). This argument iterated implies R ∼ Geom(1/2) and its

independence of Fn. A symmetric argument yields the distribution of L, the num-

ber of ones to the left. The delay time is the height of the new triangle of zeros

surrounded by ones which equals to R+ L+ 2.

Figure. Movement of the kink

Proof of the Theorem: By the isomorphy of 6/16 and 18/256 on the special

configurations it suffices to just consider the system (Ẽ, τ̃). The Lemma yields

the i.i.d. increments and delay times. For Rule 18/256 the temporal increment is

identical whereas the spatial increment is double (see also illustrations (1) and (2).

Obviously E(X1) = 0 hence the expected drift is

E(Sn − S0) = E





I(n)
∑

i=1

Xi



 = E(X1)E(I(n)) = 0

by Wald’s identity (I(n) is optional). The expected squared increment and ex-

pected delay time are both readily computable from R and L and equal to 4. Since
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{(X2
i , ti), i ∈ N0} are mutually i.i.d. by the Renewal Theorem we get that

1

n
E





I(n)
∑

i=1

X2
i



 −→
E
(

X2
1

)

E(t0)
= 1

as n → ∞.

3. Conclusion

In the case of several kinks new phenomena appear. Neighbouring kinks annihi-

late each other and it is known that from an initial configuration with finite support

at most one kink survives after a finite time ([J]). However the mechanism for the

joint motion of even two kinks seems complicated due to dependency. It needs to be

understood well in order to confirm Lind’s conjectures and fully understand Rule

18.
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