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ABSTRACT. The striking boundary dependency, the Arctic Circle Phenomenon, exhib-
ited in the Ice model on the square lattice extends to other planar set-ups. This can be shown
using a dynamical formulation which we present for the Archimedean lattices. Critical con-
nectivity results guarantee that the Ice configurations can be generated using the simplest

and most efficient local actions. Height functions are utilized throughout the analysis. On
a hexagon with suitable boundary height the cellular automaton dynamics generates highly
nontrivial Ice equilibria in the triangular and Kagomé cases. On the remaining Archimedean
lattice for which the Ice model can be defined, the 3.4.6.4. lattice, the long range behavior is

shown to be completely different due to strictly positive entropy for all boundary conditions.

1. Introduction. Although the best known version of the Ice model is that
defined on the square lattice ([1], [9]), the construction is quite natural on a number
of other lattices as well. Here we investigate using dynamical methods the basic
properties of the bounded version of the model on the other Archimedean lattices:
triangular, Kagomé and 3.4.6.4. lattices. The investigation serves two purposes.
Firstly it complements the various studies of the infinite unbounded models and
answers the question on the influence of the boundary posed already by Kasteleyn
([7]). Secondly we hope to contribute whatever is possible to the unification of the
theories of lattice statistical mechanics, higher dimensional symbolic dynamics and
tilings that has been worked on for some time now (starting from ([3], [11], for later
developments see e.g. [8], for Ice e.g. [2]).

Our results show that 18/20/36-vertex models (Ice on Kagomé, triangular and
3.4.6.4. lattices respectively) can to a certain extent be analyzed with similar means
than the square lattice one (the Six-vertex model). They have analogous cycle
structure which facilitates the configuration computation with simple and efficient
cellular automata algorithms. Height works in the same way in these models and
the boundary effects it forces are qualitatively similar – up to a point. There can be
a sharp a demarcation of temperate and frozen subdomains akin to the Arctic Circle
Phenomenon in Dominoes/Dimer model originally discovered by Propp et. al., see
[6]. In the triangular and Kagomé Ice the demarcation can be observed but just
as in the context of e.g. the Hard square/hexagon model ([1]) there is a surprising
lattice dependency already within the set of the four possible Archimedean lattices.
Indeed the influence of the underlying lattice is even more pronounced here: Ice on
3.4.6.4. lattice is in terms of long range order a qualitatively different model from
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the three other versions of Ice. It shows strong uniformity in the configurations
independent of the boundary condition.

Whenever analyzing the bounded 6/18/20/36-vertex models, similarities admit-
ting, we refer to the results already established for the Six-vertex model ([4]) and
concentrate here on the novel features. We make however an effort to make this
paper self-contained so that the reader can grasp the main ideas and all the new
results from here.

1.1. Set-up. In the vertex-models of the Statistical Mechanics instead of spin
variables one deals with arrow orientations between nearest neighbor lattice sites.
The global ensemble of the orientations defines the configuration.

Definition 1.1. A vertex configuration is the arrangement of arrows arriving
to and departing from a lattice point. It is legal for the ice rule if there is the
same number of incoming and outgoing arrows at that lattice point. If there is a
legal vertex configuration at every vertex of the lattice the arrow configuration is
legal for the Ice model.

In the square lattice case there are six such vertex configurations, hence the
Ice model on that lattice is also called the Six-vertex model. The term “Ice”
stems from the physical interpretation for this model ([9]). Although this physical
interpretation does not carry over to other lattices, for simplicity we call those rules
ice-type. For the purposes of this paper we only consider Ice on planar lattices.

A rule of this kind obviously requires even vertex degree. Among the three regu-
lar planar lattices – the square, triangular and hexagonal lattices – Ice model can be
defined on the first two. The next simplest planar lattices are the Archimedean or
uniform lattices. They are defined via tilings: their bonds correspond to the tile
edges of such tilings by regular polygons which are up to rotation identical at each
vertex. There are 21 ways of tiling a vertex neighborhood with regular polygons. 11
of these arrangements extend to the plane - these are the Archimedean tilings (com-
plete list [5]). Among these we have four lattices with even vertex degree: square,
triangular, Kagomé and 3.4.6.4. lattices (the code number n1.n2.n3.n4. lists the
n-gons that one sees turning once around a vertex). In physical terms these are the
simplest discrete planar structures that accommodate the dipole/incompressibility
restriction of the ice-type.

6 12 2 2 4 x 3 x 6

Figure 1a, b, c. Vertex configurations: arrow arrangements and multiplicities.

The available vertex configurations are illustrated in Figure 1. Triangular lattice
is on the left with multiplicities accounting rotations and reflections listed below.
In the center we have the analogous arrangements for the square lattice. The mul-
tiplicities for Kagomé and 3.4.6.4. are obtained from those of the square lattice
vertex configurations by multiplying them with the numbers on the right, below
(the numbers of possible orientations of the middle arrangements in these lattices).
Adding the numbers up we could call these 20/6/18/36-vertex models (for trian-
gular, square, Kagomé and 3.4.6.4. lattices respectively) but for simplicity we just
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call them ice models on the appropriate lattice.

The Square ice on a bounded domain was considered in an earlier paper ([4]).
Here we study the other three models on a hexagonal domain. A N-hexagon in
the case of the triangular lattice is a domain which is oriented along the lattice axes
with N boundary arrows along each edge, N even. Or equivalently we can require
that along each edge there are N/2 lattice sites with all six arrows attached to
them. Figure 2a. illustrates the area around leftmost corner of such hexagon (the
boundary will have six-fold symmetry). The boundary arrows, 6N−6 in total, are
rendered bold. They will be fixed and the main problem will be determining when
and how the interior arrows (lighter) can be arranged into a legal configuration.

The other simple domain shapes on the lattice, a unilateral triangle and a
rhombus turn out to be somewhat restrictive due to the acute corners. On the
hexagonal domain we will be able to illustrate both “ordered/frozen” and “dis-
ordered/temperate” configurations and their coexistence as in a diamond in the
square lattice case in our earlier study.
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Figure 2a, b (top), c, d (bottom). The crossing rule and configurations with
heights.

The dual lattice of the triangular lattice is the hexagonal lattice. Every lattice
site is the center of a minimal (unit) hexagon the boundary of which we should
think of having a clockwise orientation. By the ice rule the total flux across this
boundary is zero (in going arrow counts +1, outgoing −1). Consider the maximal
dual lattice loop on the domain, the boundary loop (the dual lattice edges of
this loop still cross arrows in the N -hexagon). It is the sum of all the directed unit
hexagons in the dual lattice inside the domain. Hence if the configuration inside
the domain is legal then the flux across the boundary loop vanishes.

In the Kagomé-lattice N -hexagon has N lattice sites and N/2-arrows along each
edge. Figure 2c. illustrates the leftmost corner of such hexagon. The bold arrows
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are again the fixed boundary arrows. Because of the ice-rule the flux around each
lattice point vanishes. Therefore a legal fill-in of a hexagon will have zero boundary
flux. Same principles extend to the 3.4.6.4. lattice case.

Let C be the set of legal ice configurations on a given triangular lattice hexagon
and let D, the dual cover, denote the finite subset of the hexagonal lattice that
has the property that an edge connecting a nearest neighbor pair of vertices from
D crosses an arrow c ∈ C.

The height, f : C×D → Z, is an extremely useful function in analyzing ice-type
models. Its increments on D are defined by the crossing rule in Figure 2b. The light
arrow indicates the edge on the dual lattice that we move along and the bold marks
the configuration arrow. The rules apply in all possible rotations. Note that height
around a closed loop in D vanishes (since this is the same as computing the flux
across that loop). Hence f is independent of the path along which it was computed.
To be unique it needs to be specified at one base point which we choose to be the
leftmost dual lattice point (starred). In Figure 2a. we have indicated the heights
with the choice that at the base point height vanishes.

The dual of the Kagomé/3.4.6.4. lattice is the rhombus-lattice [3.6.3.6]/[3.4.6.4]
respectively. The definition of height on them is as above and we have indicated
the values in Figure 2c. and 2d (The numbers in square brackets refer to Laves
tilings, see [5]. Note that 3.4.6.4. being rendered here so that squares turn into
lozenges does not in any way affect arguments since the neighborhood topology
remains intact).

Height is a Lipschitz-function with constant 2: |f (c, d1)−f (c, d2) | ≤ 2m (d1, d2) ,
were m is a metric on dual cover of the unit lattice. A rather natural choice is the
Manhattan metric i.e. minimal hop count between di ∈ D scaled with the lattice
unit. Height is a rather well behaved function and in here as in the Domino context
one can often approximate it linearly.

The three cases when height is monotone increasing/decreasing or alternates
along a path in the dual lattice will be important in later considerations. As the
boundary specification will be critical we have chosen to illustrate this on the bound-
aries in Figure 2. The boundary arrows in the lower halves of the samples are such
that the height decreases monotonically as we trace the boundary clockwise. The
upper half of the boundary illustrate the alternating case.

2. Connectivity. Consider a legal triangular, Kagomé or 3.4.6.4. ice configuration.
Suppose that we can find a closed unidirectional path of configuration arrows in it
(or a path from infinity to infinity). Reversing this directed cycle i.e. flipping every
arrow on the cycle results in an other legal configuration since the rule at each
vertex is respected. Existence of an unidirectional cycle is therefore related to the
non-uniqueness of the fill-in: a boundary arrangement of arrows that allows a fill-in
which has an off-boundary unidirectional cycle allows in fact multiple fill-ins.

Definition 2.1. Call the smallest lattice triangle a 1-triangle. The orientation △
is even and ▽ is odd. On the Kagomé lattice we also have a minimal hexagon, a 1-
hexagon and on the 3.4.6.4. lattice we additionally have left-leaning, right-leaning
and straight standing 1-lozenges. If these directed 1-polygons are unidirectional
we call them 1-cycles and their reversals local moves.

In Figure 2a, c and d. the sample configurations contain 1-cycles indicated by
underlined height. By utilizing flux as in [4] one can in fact show that
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Proposition 2.2. A unidirectional cycle always encloses a 1-cycle.

We say that a cycle is off-boundary if it does not contain any of the (fixed)
boundary arrows. Define a bounded frozen configuration to be one without off-
boundary 1-cycles. Its opposite is the temperate configuration which we define as
one having a directed cycle boundary.

Related to the 1-cycles there is a simple but useful notion which we will need in
the proof below. In Figure 3a, b. the infinite wedges Ci rooted at the vertices of
the 1-cycles are contact sectors. For the triangle oriented upside down we reflect
the wedges and for 1-hexagon we have for clarity indicated only the odd sectors.
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Figure 3a, b. Contact sectors. c, d, e. Vertex configuration mismatch.

Theorem 2.3.1. On triangular and Kagomé lattices the set of Ice configurations
with common boundary arrows on a N -hexagon is connected under 1-cycle reversals
i.e. two such configurations can be transformed to each other with a finite sequence
of 1-cycle reversals.

Proof. The argument uses a “lexicographic sweep” refined from [4]. When during
the sweep we arrive to a lattice point l where there is the next mismatch between
the two configurations under comparison, the situation in triangular lattice looks
like in Figure 3c. L denotes the “front” above which all vertex configurations in the
two configurations match. In the Kagomé case we may encounter three different
arrangements, two of which are in Figures 3d, e. (the third is like the rightmost,
but rotated 60 degrees clockwise).

Consider the case of triangular lattice. The three arrows a− c cannot all be in or
all out since in that case there cannot be a mismatch. So among arrows 1− 3 there
is a 2-1 or 1-2 split between ingoing and outgoing arrows. Hence we can always find
among them a pair ((1, 2), (1, 3) or (2, 3)), same 2-path on both configurations, so
that the arrows in them are unidirectional but oriented opposite in the two paths.
Then tracing pairs of arrows with opposite orientations at the same location in the
two configurations one then extends these 2-paths to identical off-boundary cycles
with opposite orientations in the two configurations.

Pick one of the configurations e.g. the one with clockwise oriented cycle, O1. By
Proposition 2.2. inside it there is at least one 1-cycle of some type. Denote their
collection by {Ci} . Choose two of its contact sectors in such a way that they do
not overlap and do not contain the point of mismatch l. It is then possible to find
two directed paths, one in each of the contact sectors, which connect the 1-cycle to
O1 (as in Theorem 2.3. of [4]). Moreover the orientations of these paths are such
that a new clockwise directed cycle is formed that passes through l, along the edge
of the 1-cycle and is contained in the domain bounded by O1. This construction is
done to all of the 1-cycles inside O1. Finally define the natural minimal directed
cycle along these new cycles inside O1 and call it Õ1.

Now some the 1-cycles inside O1 are on the boundary of the Õ1 and none are
strictly in its interior. By reversing these cycles if necessary we obtain a new directed
cycle O2 with the property that all of the 1-cycles {Ci} are left outside it. Moreover
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O2 encloses a strictly smaller area than O1, all inside it.
Applying the argument above to O2, O3 and so on finally forces a 1-cycle that has

l as its vertex. Hence we correct a mismatch at l. Note that if the path O1 involved
the pair (1, 3) we need a second application of this argument, now to a loop through
(1, 2) or (2, 3), whichever pair is still mismatched in the two configurations. After
this all arrows at l match and the front L moves to the next lexicographic location
to check for a mismatch.

For the Kagomé lattice one pass of the argument above suffices. Whether the
1-cycle is a 1-triangle or 1-hexagon affects only the choice of the contact sectors. �

We present the argument above since it extends the one in [4] for the square
lattice case and also since it seems to be the most transparent way to argue the
result. The argument is also quite general holding for other domains and 3.4.6.4.
lattice as well. Since the contact sectors do not work so easily for the latter we now
sketch an alternative proof (for the most general argument see [10]).

For all our four lattices the height function introduces a partial order in the
set of configurations with common boundary configuration: c1 � c2, if f(c1, d) ≥
f(c2, d), ∀d ∈ D. The local minima of the height surface are simply the center points
of counterclockwise oriented 1-cycles. If these are off-boundary one can reverse them
and reach strictly higher height. After a finite number of steps one arrives at the
maximal element c: f(c, d) ≥ f(c, d), ∀d, any c with the same boundary configu-
ration. The maximal element has by definition no off-boundary counterclockwise
oriented 1-cycles. Through this (or the minimal element) one connects all the con-
figurations with a finite sequence of local moves. Hence

Theorem 2.3.2. The set of 3.4.6.4. ice configurations with common boundary
arrows on a N -hexagon is connected under 1-cycle reversals.

Through counterexamples we now see that no smaller set of local moves suffices.
Suppose that we have a configuration on the triangular lattice where each of the
lattice arrows is directed either toward 1, 3 or 5 o’clock. Then reverse all the arrows
on one of the 1 o’clock and 5 o’clock lattice lines. Cut a N -hexagon out from this
so that the intersection of these lattice lines is at the center. The patch that we see
at the center of the hexagon looks like Figure 4a.

Reversing the 1-triangle at C will obviously not affect the boundary arrows i.e.
we get another configuration, call it H̃, compatible with the boundary configuration.
If we are subsequently only allowed to act with △-reversals there will be only two
such triangles to work on, the one at T in H̃ and the one below C. But it is easy to
see that reversing these and any other directed △-cycles will never yield a directed
cycle outside the two acute wedges defined by the bold lines. Hence two sides of C
will never be returned to their original orientation.

In the case of Kagomé lattice we generate a configuration as above, this time
from arrow lines pointing toward 3, 7 and 11 o’clock. This configuration has has
the property that all 1-triangles are directed (see Figure 4b.). If we reverse any one
of them, say C, the new configuration is compatible with the boundary but still has
no directed 1-hexagons. Notice that even if only the reversal of ▽ is forbidden we
are still stuck. Reversing C cannot be undone with△-actions and all the 1-hexagons
will still remain undirected.

If the configuration is generated in an alternating fashion from arrow lines to
directions 1 and 7, 3 and 9 and 5 and 11 o’clock we can see in it a patch like Figure
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4c. If we reverse the 1-hexagon, the 1-triangles around it will become directed
but the David’s star is isolated from the 1-cycle reversals outside it, so its original
orientations cannot be returned.

For the 3.4.6.4. lattice consider the arrangement on the right, Figure 4d. This
hexagon clearly extends to a unique global configuration. Suppose we reverse the
even triangle marked with C and then ban subsequent even 1-triangle reversals. It is
easy to see that the right-leaning lozenges can never be reversed in this configuration.
Hence return to the original configuration is impossible. Similarly if after this move
we reverse the left-leaning lozenge at L and then ban left-leaning lozenge moves,
the original configuration cannot be recaptured with the remaining moves.

Finally if we pick a configuration with only 1-cycles, flip one of the 1-hexagons
and then forbid 1-hexagon moves, no neighboring lozenges can be reversed and the
original configuration cannot be recaptured. All together we have

Proposition 2.4. The connectivity results fail if not all 2/3/6 types of local moves
are available for triangular/Kagomé/3.4.6.4. lattices respectively.

T

C

C

C

C L

Figure 4a, b, c, d. Restricted actions.

3. Ice through dynamics. From the practical point of view the most signifi-
cant consequence of Theorems 2.3.x. is that they facilitate the generation of the
configurations with a given boundary configuration. We now indicate how this is
done. The aim here is simply to get an algorithm to study the model, not run time
considerations.

The ensemble of arrows on the triangular lattice can be viewed as an array of
either just even or just odd 1-triangles with oriented sides. Call their restrictions
to the N -hexagon Le and Lo respectively. This is not a partition since each off-
boundary arrow is in one even and in one odd triangle.

On the triangle arrays we define two local update rules. If an off-boundary
even/odd 1-cycle is encountered, it is reversed independently with probability 1/2
and also its odd/even nearest neighbor 1-triangles are updated accordingly. These
rules give global random maps Fe and Fo which check 1-cycles on Le and Lo re-
spectively and independently update the arrow configuration on both. They define
a probabilistic cellular automaton (pca) action on the configurations.

On the Kagomé lattice we additionally define a local rule reversing an unidirec-
tional off-boundary 1-hexagon with probability 1/2 and updating the six neighbor-
ing 1-triangles. Call the global map of independent flips Fh. The updating sequence
{Fe, Fo, Fh} defines a pca cycle. In the 3.4.6.4. lattice case we have to perform
the lozenge flips as well. Let Fl Fr and Fs denote the probability 1/2 flips of the
left leaning, right leaning and straight standing off-boundary lozenges respectively.
The updating sequence {Fe, Fo, Fs, Fl, Fr, Fh} has been used in the generation of
the configurations of this ice model.
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For a given boundary condition the set of legal fill-ins and the local moves consti-
tutes a finite Markov Chain. Suppose (as above) that all possible transitions have
positive probability. Theorems 2.3.x. imply the irreducibility of this chain. Because
of the positive transition probabilities the chain is also aperiodic. Hence the chain
is ergodic: given any initial configuration the pcas above will eventually generate
any configuration compatible with the boundary configuration of the initial one and
weight them uniformly (according to the measure of maximal entropy) ([12]). The
choice of probability 1/2 for the flip is for maximal speed. Note that in each of
the lattices the densities of the 1-n-gons of all types are the same (in the set of
all 1-polygons). Hence in the update schemes above all local moves are weighted
equally. We do not know of any rigorous relaxation rate result applicable here but
in all simulations it seemed exponential.

4. Boundary dependency. We now investigate the key feature of the finite
versions of these lattice models – the long range boundary dependency. Among
the Ice models the square lattice case has already revealed a striking phenomenon,
the existence of an Arctic Circle delineating the random and ordered subdomains
([4]). Here we split the analysis for the other Archimedean lattices in two subsections
since a surprising demarcation takes place. The material here contains both rigorous
results and computer simulations using the principles from above.

4.1. Triangular and Kagomé cases. By the boundary height, f∂ , of a
configuration we mean the restriction of height to the boundary of the dual cover D
(see Section 1.1.): computing it we follow the boundary loop thereby only crossing
boundary arrows.

If the boundary height over a segment is monotone increasing, monotone de-
creasing or alternating we say that the segment has tilt +1,−1 and 0 respectively.
Suppose that the boundary height on each entire edge of the hexagon is either mono-
tone increasing, decreasing or alternating. Then the signature of the boundary is
the six-vector that we gets by recording the tilts starting from the base point and
circumambulating the boundary of D clockwise.

For both triangular and Kagomé lattices the signature (+1,+1, 0,−1,−1, 0) and
its cyclic permutations correspond to perfectly ordered configurations. They are
frozen i.e. contain no directed 1-cycles.

The signature (0, 0, 0, 0, 0, 0) is the maximally disordered case and the configu-
rations are temperate. Now the boundary arrows form unidirectional paths which
are at least the length of the edge. The case where the entire boundary is a uni-
directional cycle has this signature and clearly has the largest such cycle in any
hexagon.

LetA(N) be the number of non-boundary arrows in aN -hexagon and let C(N) be
the number of legal fill-ins for a given boundary condition. Then it is natural to call
hN = 1

A(N) logC(N) the entropy of a boundary condition. If a configuration

is given with its boundary we can also refer to this number as the entropy of a
configuration.

Suppose that the lattice spacing is set to be 1/N . Then the configuration is
defined in a discrete subset of a unit hexagon. If a sequence of boundary heights
{ 1
N
f∂
N
} converges as N → ∞ to a limiting function f∂ we call this the asymptotic

boundary height. As the argument and the image are scaled identically and the
height is a Lipschitz-function, so is f∂ . Whenever f∂ is differentiable, its derivative
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along the boundary generalizes the notion of tilt. Finally if both f∂ and h =
limN hN , exist, the latter gives the asymptotic exponential size of the set of legal
configurations for the corresponding asymptotic boundary height.

The frozen case corresponds to a boundary height that uniquely defines the entire
height and thereby the configuration. A directed cycle boundary has asymptotically
vanishing boundary height and admits maximal number of fill-ins. Between these
extrema there are many possibilities. As we will see even in the relatively simple
cases where the boundary tilt is piecewise constant, typical configurations can be
highly non-trivial.

Proposition 4.1. For the triangular and Kagomé lattice the entropy can attain
arbitrarily small positive values in the scaling limit.

Proof. Consider a seed configuration on the triangular lattice with initial arrow
orientations as indicated in Figure 5a for a small hexagon. The construction for the
Kagomé (and square) lattice is essentially the same and we omit it.

x

T

F

C

Figure 5a, b, c. Low entropy construction, forced cycle and the cycle template.

Note that in the construction along each lattice line the arrow orientation across
the hexagon is constant. The dotted extra lines are defined by the locations where
this orientation reverses/the boundary condition (bold arrows) changes. They in-
tersect at x thereby dividing the domain into quadrants. The leftmost one, F, is
clearly frozen; when the pca runs from this initial state the arrows within F will
remain unchanged since no 1-cycles can be introduced to this subdomain. The
opposite quadrant on the right, T, is initially all directed 1-cycles (both even and
odd). When the pca runs these will introduce directed 1-cycles to the top and
bottom quadrants as well.

Let AT , A
c
F
and A denote the number of 1-triangles in T , in the off-F area and the

total number respectively. By only flipping say even unidirectional 1-triangles one
immediately establishes the positive lower bound AT

2A log 2 for the entropy. Similarly

the number
A

c

F

A
h bounds the entropy from above (free action on Ac

F
). Here h is the

(finite) entropy of the free infinite model.

The areas AT , A
c
F

are determined by the location of the intersection point x,
which in turn is determined by the boundary condition. If x is the rightmost point
of the hexagon we have a zero entropy case whereas if x is the leftmost point on the
boundary we are in the maximally disordered case. The boundary height is here of
piecewise constant tilt ±1 or 0, hence the limiting boundary height exists. When
the scaling step 1/N is fine enough we can reach arbitrarily small positive entropy
value simply by forcing x far enough to the right. �
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A more general statement it likely to be true. However proving it would require
some detailed information on the measure of the maximal entropy which we do not
currently have.

Claim 4.2. For the triangular and Kagomé lattices the entropy as a function of
the boundary height can attain any value between 0 and h in the scaling limit.

We now present some less trivial boundary conditions that lead to a striking
illustration of the long range order in the ice on triangular and Kagomé set-up.

The signature choice (−1,+1,−1,+1,−1,+1) is recorded in Figure 6a., top. This
height choice leads to the coexistence of frozen and temperate domains. Figure
6a. middle illustrates the even 1-cycle flip distribution on a triangular lattice 99-
hexagon. Here we have recorded the site wise cumulative total of even 1-cycle
reversals during the iterates 105 − 3 × 105 when the system was extremely close
to equilibrium. Brighter cells indicate higher flip activity. Black means no record
of activity. There is a clear demarcation between corner areas where there is no
activity and interior where the flipping is increasingly intense.

Figure 6b., top, shows another boundary condition on the same domain. Each
edge is now split in the middle into a segments of extremal tilt ±1 in an alternating
fashion. This choice freezes a lozenge shaped area at each corner (one of which
is indicated). Figure 6b., middle, illustrates the cumulative even 1-cycle reversal
distribution at equilibrium during the iterates 105 − 2 × 105. In both this and the
previous simulation the odd 1-cycles did show an indistinguishable distribution.

In the Kagomé case, too, these are perhaps the simplest boundary conditions
yielding non-trivial interiors with symmetries. The bottom row of Figure 6. shows
results from a bit smaller run, the cumulative cycle counts from iterates 12× 103 −
24× 103 and 6× 103 − 12× 103 for the two boundary choices (system very close to
equilibrium). Here flip activity is rendered dark and the inert background is light
grey to make it visible. The coarser appearance is due to the fact that the 1-cycle
density is now half of that in the triangular case.

The rendering shows both even 1-triangle and 1-hexagon flips. The darker entries
at the center indicate the array of triangles. At the center their flip frequency
is about five times that for 1-hexagons. Note that if the arrows were laid down
independently and with probability 1/2 to each orientation on a given edge, the ratio
of the flip probabilities of an even 1-triangle to a 1-hexagon would be eight. Our pca
here checked the 1-hexagons twice as often as even 1-triangles (with update cycle
{Fe, Fh, Fo, Fh}). Hence if this distribution would be preserved it would generate
flip probability ratio exactly four. So we can conclude that the maximally disordered
vertex-configurations, the statistics of which we expect to see at the center, are some
distance from uniform Bernoulli.

While the fine structure of the interior in Figure 6. depends on the algorithm,
the actual arrow distribution at the equilibrium does not. And most importantly
the key result, the sharp demarcation of frozen and tempered subdomains akin to
the Arctic Circle Theorem is plain in Figure 6.

Due to the corner lozenges (in Figure 6b., top) one can actually compute upper
bounds for the entropies on both lattice using the free models much the same way
as was done in the square lattice case (e.g. in Figure 6b the upper bound is at most
half of those for the free models).
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Figure 6a, b (left and right columns). Top row: the domain with boundary
signatures, middle row: triangular, bottom row: Kagomé lattice cumulative flip
counts. For more data on the runs and renderings, see the text.

4.2. 3.4.6.4. lattice. The Ice on the remaining Archimedean lattice, 3.4.6.4.,
turns out to be of quite different character. Some unexpected local properties of
the lattice overrule the Arctic Phenomena observed above on its kin.

One of these combinatorial oddities already lurks in Figure 2d. The figures at-
tempted to illustrate the maximal boundary tilt in their lower halves. This succeeds
for the two other lattices - the heights are indeed a monotone increasing sequences
downwards. But for 3.4.6.4. construction like that turns out to be impossible,
revealed by the height value 2 at the bottom.

Indeed there are no maximal tilt ±1 boundary conditions, hence there are no
frozen configurations for ice on 3.4.6.4. The absolute value of the tilt is uniformly (in
the size of the domain hexagon) bounded away from 1. We conclude the presentation
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by formulating a “no-go” Proposition quantifying this and the entropy implications.
The lattice directions of the 3.4.6.4. lattice are the ones it inherits from the

underlying triangular lattice (0,±π/3). Our hexagonal domain has its edges ori-
ented along the lattice directions. Along these edges the 3.4.6.4. lattice viewed as
a subset of the triangular lattice has period eight. An arrow block consisting of n
consecutive boundary arrows is called an n-block.

Proposition 4.3. Consider a 3.4.6.4. Ice configuration on a N -hexagon and a
n-block along any of its straight edges. If the boundary arrows are of period 8 in
the n-block the height over the block satisfies |∆h| ≤ (3n + 7)/4. For an arbitrary
n-block of arrows, n ≥ 15, the bound is |∆h| ≤ (13n+28)/15. Hence if the boundary
height exists in the scaling limit and has tilt, the absolute value of the latter cannot
exceed 13/15.

In any 3.4.6.4. Ice configuration in the set of 1-triangles and 1-lozenges at least
1/7 of them are unidirectional. If the scaling limit entropy for a given boundary
exists, it is bounded from below by 1

24 log 2.

Proof. The first statement follows from the observation that an all-in or all-out
8-block between two neighboring 1-hexagons immediately contradicts the ice rule
in one of the boundary vertices. Therefore over such block the absolute height
difference is at most 6. If a piece of the edge is made periodically of an 8-block,
then in particular the 8-block between two 1-hexagons is an period block. By filling
up a n-block with a maximal number of period blocks of length 8 we immediately
obtain the first bound.

For the second bound we note that since a 15-block necessarily contains arrows
from two 1-hexagons there must be at least one arrow of each orientation in such
a block. Hence the height difference cannot exceed 13 in absolute value over the
block. The filling argument over the n-block gives the stated bound which in turn
implies the scaling limit bound once the tilt exists.

For the latter half of the statement pick a legal configuration and a 1-triangle in
it. Suppose that it isn’t unidirectional. Up to rotation and reflection it will look
like the triangle on the left of Figure 5b. Then either the lozenge on its right is
unidirectional or if it isn’t, the triangle next to it on the right must be. Hence in
any Y-shaped arrangement of 1-triangles and 1-lozenges (as in Figure 5c.) there is
at least one 1-cycle. As there are at most 24 arrows in this Y-plaquette determined
by the construction, the lower bound follows. �

Recall that besides having completely frozen configurations, by Proposition 4.1.
the Ice on triangular and Kagomé lattices can have arbitrarily low entropy config-
urations (and so can square ice by similar construction). By the Proposition above
the situation on 3.4.6.4. differs on both counts and implies that configurations are
of quite different character.

The height and entropy bounds of the Proposition are likely not to be tight. In-
deed it seems rather difficult to design “stiff” configurations of any kind. The lowest
entropy boundary configurations that we have been able to construct have entropy
1
6 log 2. The seed for such configuration was illustrated in Figure 4d. The fattened
hexagon can be extended periodically to an arbitrarily large, unique configuration.
In this configuration all the horizontal right leaning parallelograms like the one with
bold arrows in the Figure 4d. can generate under the pca action exactly three other
local arrow arrangements. Accounting the density of these parallelograms in the
configuration immediately gives the entropy value.
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The highest entropy boundary condition that we know of (its seed configuration
having all 1-cycles directed) has the entropy at least 1

4 log 2 (which thereby is a
lower bound for the entropy of the free model on 3.4.6.4.).

In view of the results it should come as no surprise that the configurations of
3.4.6.4. ice look disordered and rather homogeneous for any boundary condition.
Experimenting with hexagons of size around N = 100 we found faint traces of
boundary dependency in the statistics of the interior (e.g. slight variation in the
1-cycle flip densities). But since frozen states do not exist for 3.4.6.4. there is no
possibility of such clear demarcation result as the Arctic Circle/Flower exhibited
by the Ice on the other Archimedean lattices.
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